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SECTION 1 

INTRODUCTION 

This report summarizes the results of the work performed under NASA 
contract NAS1-18098 from September 1985 through August 1986. The report is 
divided into five sections, Section 2 presents a new class of closed-form 
solutions for finite-time linear-quadratic optimal control problems, which 
is shown to be computationally more efficient than previously known closed- 
form solutions. Section 3 utilizes the closed-form solutions of Section 2 

for the feedback gains in the free-final-time perturbation feedback 
problem, where the initial conditions and terminal constraints may be 
assigned off-nominal values. Section 4 presents a control scheme for 
general nonlinear three-axis slewing maneuvers of flexible spacecraft. 
Under this control scheme, an open-loop rigid body nominal solution is 
applied to the spacecraft while a perturbation feedback controller reduces 
the elastic response and causes the system to closely follow the nominal 

rigid body trajectory. A modified Kalman filter is implemented for 
estimating the states of the system. Section 5 presents a summary and 
conclusions for this report. Reference 9 documents the detailed 
derivations of results presented in this report. 
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SECTION 2 

CLOSED-FORM SOLUTIONS FOR FINITE-TIME LINEAR-QUADRATIC 
OPTIMAL CONTROL PROBLEMS 

2.1 Introduction 

During the design and analysis phases of optimal control synthesis, 
state and control trajectories are often computed to help the control 
engineer evaluate the control design. The most straightforward and most 
widely practiced method of computing the state and control trajectories is 
by numerically integrating the governing differential equations. This may 
be costly for flexible space structures which may have many elastic degrees 
of freedom. The reason for the high cost is two-fold: first, the large 
number of elastic degrees of freedom requires a large number of states to 
be integrated; and second, since the highest frequency of the system to be 
simulated increases as the number of elastic modes is increased, the 
integration step-size must be decreased correspondingly. Thus, the 
computational cost of the simulation increases rapidly as more elastic 
degrees of freedom are included. 

This section presents a new class of closed-form solutions for 
finite-time linear-quadratic optimal control problems when the plant is 
time-invariant. With a closed-form solution, one can compute the response 
of the entire system at any point in time. Thus, the engineer can compute 
the system response at any desired interval, independent of system 
frequency. (Of course, if one needs time-history plots with good 
resolution, the time interval does depend on system frequency.) In 
addition, numerical roundoff errors are greatly reduced, because the number 
of floating point operations’ (flops) required for computing closed-form 

’ A  floating point operation is more or less the amount of work needed to do 
a floating point add, a floating point multiply, and a little subscripting. 
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solutions is much less than for numerical integration. Sensitivity 
partials may also be computed easily when closed-form solutions are 
available C351. 

Other forms of closed-form solutions exist. For example, classical 
state and co-state solutions can be obtained from matrix exponential 
solutions where the system Hamiltonian matrix is used. However, such 
solutions either suffer from numerical instability or require too much 
computation. With a numerically stable and efficient closed-form solution 
and with the rapid development of parallel processing technology, one may 
envision the day when feedback gains may be computed on-orbit in real time. 
Whether the solutions proposed in this chapter can fulfill such a goal is 
of great interest, and is a subject for further research. 

Although there are many different finite-time optimal control 
problems, their solutions can be written as differential equations of only 
a few basic forms. The closed-form solutions of these basic differential 
equations are presented in Section 2.2, and example applications are 
provided in Section 2.3 for illustration. 

2.2 Closed-Form Solutions of Basic Differential Equations 

The solution of finite-time linear-quadratic optimal control 

problems involves the solution of differential equations which may be 
classified into five basic types: 

(2.2.1) 

(2.2.2) 
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m 

Yl(t) = X;,(t)EXlb(t) , and 

(2.2.3) 

(2.2.4) 

Type 1 represents the well-known differential matrix Riccati 
equation with constant coefficients. Its solution, P(t), couples into the 
differential equations of Type 2 and Type 3. The functions Xla(t) and 
Xlb(t) are solutions of differential equations of Type 2, and the functions 
X2a(t) and X2b(t) are solutions of differential equations of Type 3. In 

the above equations, A ,  E, and Q are (n x n) constant matrices, and the 
variables have the following dimensions: 

The matrices E, Q, and P(t) must be symmetric. The function Fi(t) 
is a term representing the forcing functions for the Xi(t> differential 
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equations, and accordingly has dimension (n x p) for i = 1 and (n x q) for 
i = 2. For scalar control problems, the five types of differential 
equations become scalar differential equations. However, for multivariable 
control problems, P(t) is always a square matrix; Xi(t) (i=1 ,2) may 
represent either a matrix or a vector; and Yi(t) (i=1,2) may be either a 
matrix, vector, or scalar. 

2.2.1 Solution for Type 1 Differential Equations 

The Type 1 differential equations are defined by 

b(t) = - P(t)A - A T P (t) + P(t)EP(t) - Q (2.2.6) 

The solution of the above differential matrix Riccati equation is well- 
known and, in fact, can be expressed in several different forms. One of 
the most useful forms of the solution is due to Potter [5,17,22,26-281, and 
is given by the sum of the steady-state solution (i.e. the solution to an 
algebraic Riccati equation) [ 1 ,5,17,22,251, and a transient term: 

P(t) = Pss + z-lw , 

where 

(2.2.7) 

T 0 = PssA + A Pss - PsSE Pss + Q . 

In order to obtain the differential equation for Z(t), one needs 
the following expression for the derivative of a matrix inverse: 

-&Cz-’(t)1 = - z-l(t)i(t)z-l(t). (2.2.8) 

Substituting (2.2.7) into (2.2.61, and making use of (2.2.8), one obtains 
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where 

= A - E P  ss 

is the closed-loop system dynamics matrix. The solution for Z(t) can be 

cast in either of the following two forms [11,17,311: 

or 

-T 
-A(tf-t) -A (tf-t) -1 

Z(t) = Zss + e CZ( tf )-Zss1e , Z(tf) = CP(tf)-Pssl ; 

(2.2.10) 

+ ZssiiT - E . ss 0 = iiz 

It can be shown that Z(t) and Z-'(t> exist for well-posed optimal 
control problems. 

As shown in Sections 2.2.2 - 2.2.5, the symmetric matrix Z(t) plays 
a central role in the solution of differential equations of Types 2, 3, 4, 
and 5. 

2.2.2 Solution for TVDe 2 Differential Eauations 

The Type 2 differential equations are characterized by differential 
equations with time-varying coefficient matrices, where the coefficient 
matrices are functionally dependent upon the Type 1 equations. The general 

form for the Type 2 equations is given by 
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(2.2.11) 

I 

On assuming a solution of the form 

X,(t) = z-l(t)w(t) 9 (2.2.12) 

where W(t) is unknown, it can be shown that the solution of (2.2.11) is 

given by C91 

(2.2.13) 

where 

is the state transition matrix for the homogeneous part of (2.2.11). The 
integral term in (2.2.13) is easily obtained when Fl(t) can be expressed in 
terms of exponential matrices. 

I 
2.2.3 Solution for Type 3 Differential Equations 

Like the Type 2 differential equations, the Type 3 differential 
equations are characterized by differential equations with time-varying 
coefficient matrices, where the coefficient matrices are functionally 
dependent on the Type 1 equations, The general form for the Type 3 
equations is given by 

(2.2.14) 
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On assuming a solution of the form 

(2.2.15) 

where W(t) is unknown, it can be shown that the solution of (2.2.14) is 
given by 

t 
X2(t) = 92(t,to)X2(to) + I 9 (t,r)F2(r)d-r , (2.2.16) 

to 

where 

is the state transition matrix for the homogeneous part of (2.2.14). The 
integral term in (2.2.16) can be easily evaluated when F2(t) is expressed 
in terms of products of Z(t) and exponential matrices. 

2.2.4 Solution for Type 4 Differential Equations 

The Type 4 differential equations are characterized by products of 
Type 2 solutions. The general form for the Type 4 equation is given by 

(2.2.17) i,(t) = Xla(t)EXlb(t) T , 

where the equations for Xla(t) and Xlb(t) are, in general, inhomogeneous: 

ila(t) = - [A - EP(t)] T Xla(t) + Fla(t) , (2.2.18) 

and 

From Reference 9, the solution for Yl(t) is shown to be 

-a- 

(2.2.19) 



T T 
Y1 (t) = Xla(t)Z(t)Xlb(t) + Y1 (to) - xla(to)z(to)x,b(to) 

(2.2.20) 

The integral terms in (2.2.20) are easily computed when Fla(t) and Flb(t) 
are functions of exponential matrices. 

2.2.5 Solutions for Type 5 Differential Equations 

The Type 5 differential equations are characterized by products of 
The general form for the Type 5 equations is Type 3 solutions and Z-’ (t). 

given by 

where the differential equations for X2a(t) and X,b(t) are, in general, 
inhomogeneous: 

X2b(t) = [ A  - EP(t)]X2b(t) + F2b(t) . 

(2.2.22) 

(2.2.23) 

From Reference 9, the solution for Y2(t) is shown to be 

(2.2.24) 
-9- 



The integral terms in (2.2.24) are easily computed when F2a(t) and F2b(t) 
can be expressed as products of Z(t> and exponential matrices. 

Throughout the developments of this section, one can observe the 
close relationship between equations of Type 2 and Type 3, and also between 
equations of Type 4 and Type 5. Indeed, this follows because equations of 
Type 2 and Type 3 are formal adjoints of one another. 

Tables 2-1 and 2-2 provide a summary of the five basic differential 
equations and their solutions. 

2.3 Example Applications of Closed-Form Solutions 

Reference 9 presents solutions of three finite-time linear- 
quadratic optimal control problems using the closed-form solutions of 
Section 2.2. For comparison, alternative closed-form solutions based on 

the state transition matrix of the state-costate system are presented. The 
comparison of the amount of computational work required for each type of 
solution clearly demonstrates that the new class of solutions is more 
efficient. 

In particular, using Potter's solution of Section 2.2.1, the 

propagation of the Riccati matrix is written as 

-1 P(t + At) = Pss + Z (t + At) , (2.3.1 1 

where Z(t + At) is computed via 

-T 
A At. (2.3.2) 

- 
- e'~tZ e 

zss ss , c  = 
iTAt Z(t + At) = C + eAAtZ(t)e 

Equation (2.3.2) requires roughly 3n 3 12 flops for the propagation of the 

symmetric definite matrix inversion requires n 3 /2 flops. 
symmetric Z(t) matrix. In computing the Riccati solution of (2.3.11, the 

Thus, a total of 
2n3 flops are required t o  propagate the Riccati solution over one time- 
step. 
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An alternative way of computing the matrix Riccati solution is the 

well-known Kalman-Englar method C181, where P(t) is propagated at intervals 
of At by 

P(t+At) = [@21(t+At,t) + @22(t+At,t)P(t)lC0,1 (t+At,t) + Ol2(t+At,t)P(t)I-l 9 

where oij(t+At,t) are partitions of the transition matrix for the state- 
costate system; that is, 

QA t O(t + At,t) = @(At) = e (2.3.4) 

and 

For linear time-invariant systems, 0 is only a function of At, and hence 
need only be computed once. 

The number of operations required for the propagation of P(t) via 
(2.3.3) is n3 flops for each of the 022P and O12P products, n3/3 flops for 
the L-U decomposition (with partial pivoting) of the [ Q l 1  + Ol2P1 term, 
n3/2 for forward elimination, and n3/6 for back-substitution, where 

symmetry of P(t) is taken into account. The total number of operations 
adds up to about 3n3 flops. Thus, the Kalman-Englar method requires about 
50% more operations than Potter's method for propagating P(t) at intervals 
of At. Moreover, numerical difficulties arise in the Kalman-Englar method 
when At is chosen too large, causing the term to be inverted to be nearly 
singular C211. For the propagation based on Potter's solution, such 

difficulties do not occur. Another solution approach is the negative 
exponential solution derived by Vaughan C381, which produces a numerically 

stable algorithm. However, since this method involves complex eigenvectors 
of the Hamiltonian matrix, the use of complex arithmetic causes the 

-13- 



operation count to be many times higher than that for the Kalman-Englar 
method. 

Table 2-3 summarizes the solutions for state and control 
trajectories of the three example problems presented in Reference 9, which 
include the optimal linear regulator, the controller with terminal 
constraints, and the tracking/disturbance accommodating controller. A 
remarkable fact is that despite the differences between the three control 
problems, the state and control trajectories may be cast into the same 
general form, namely, 

and 

where 

and 

-1 T D2 = R B Pss . 

The definitions of a(t) and b(t) , however, are slightly different for each 
problem. 

2.4 Subspace Reduction for the Hamiltonian Matrix 

It can be shown that the new class of solutions, which involves the 
variables Pss, Zss, eAt, and e-ATt, are related to the closed-form 
solutions involving partitions of the state transition matrix by means of 
reducing subspace transformations of the Hamiltonian matrix: 
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(2.4.1 1 

In (2.4.1), the left hand side represents the Hamiltonian matrix, fl, of 
(2.3.4). Exponentiation of (2.4.1 ) leads to the following block- 
diagonalizing transformation for the state transition matrix: 

W 1 [ e o  

ss [ 1;; ""1 = [ I 
z 

+ I  O22 pss psszss 1 0 

-AT( t-to) 
e 

where 0 = oij(t,to) are partitions of the state transition matrix ij 

fl(t-t,) 
O(t,to) = e 

(2.4.2) 

(2.4.3) 
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SECTION 3 

SPACECRAFT SLEWING MANEUVERS U S I N G  A CLOSED-FORM SOLUTION 

FOR THE NEIGHBORING EXTREMAL PATH PROBLEM 

3.1 Introduction 

The optimal control problem in this section is specified by 
defining a performance index which consists of a penalty on elapsed time, 
a quadratic penalty on the terminal states and controls, and an integral 
of quadratic penalties on the states, controls, and control rates. The 
final time is free, and specified terminal constraints produce a terminal 
manifold which also may be a function of the final time. Assuming that 
the nominal control and state trajectories are known, one seeks the 
perturbation feedback gains which cause the system to follow a neighboring 
extrema1 path when subjected to small perturbations in the initial 
conditions and terminal constraints. Necessary conditions for the 
perturbed system are stated, and the solution for the nominal trajectory 
is shown. Solutions for the perturbation feedback gains are developed 
based on the results of Section 2. Perfect plant knowledge and perfect 
state estimation is assumed. A time-to-go indexing scheme is used for 
applying the feedback gains so that the controller does not run out of 
feedback gains if the actual final time is longer than the nominal final 
time. Slight numerical modifications are presented for overcoming the 
numerical sensitivities of this type of controller. Two retargeting 
example maneuvers are shown, involving a spacecraft model consisting of a 
rigid body with four flexible appendages. An extension is proposed for 
using the closed-form solutions in control problems involving nonlinear 
systems by linearizing the nonlinear plant equations about the nominal 
trajectory. 



3.2 Statement of the Control Problem 

Let us assume that we have obtained the p-dimensional nominal 
N control vector u (t), which minimizes the quadratic performance index 

I (3.2.1 1 
1 T  1 tf T T 

J = Wttf + -x S x + - It Cx Wxxx + u Wuuuldt , 2 f f f  2 

subject to 

R = Ax + Bu , x(to) = x given , 
0 

(3.2.2) 

N $[X(tf),tfl = Mx(tf) - Qd (t,) = 0 , and tf unspecified . 
(3.2.3) 

In the above equations, x is the n-dimensional state vector, A and 
B are the time-invariant state dynamics and control influence matrices, Q 
is a q-dimensional vector of terminal constraints, Sf 2 0 and Wxx = 

Wxx 2 0 are weighting matrices for the state, Wuu = Wuu > 0 is a weighting 
The 

following necessary conditions must be satisfied by the nominal optimal 
control and state trajectories C71: 

T 
Sf = 

T T 1 

I matrix for the control, and Wt 2 0 is a weight for the final time. 

I 

B = AX + BU , x(to) given , 

rn m 
1 1 = - W x - A'X , X(tf) = Sfx(tf) + M v , xx 

-1 T u = - WuuB X , 

QCX(tf),tf1 = 0 , 

1 T  T 
dt 2 t, 

n = -1 d@ + - cx wxxx + u wuuu31 = 0 , 

(3.2.4) 

(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.2.8) 



where 

T Q = W t t r  + 1 xTS x 2 f f f + v J I ’  

dQ T N  T T 
- =  d t  Wt - v $,(tf) + [xfSf  + v M I A f  , 

X ( t )  is the  n-d imens iona l  costate  v e c t o r ,  and  v is t h e  q-d imens iona l  
v e c t o r  of Lagrange m u l t i p l i e r s  f o r  t h e  t e r m i n a l  c o n s t r a i n t s .  

Let u s  now c o n s i d e r  small p e r t u r b a t i o n s  i n  t he  i n i t i a l  s ta tes  

6 x ( t o ) ,  and i n  t h e  t e r m i n a l  c o n s t r a i n t s  d$. The p e r t u r b a t i o n  problem is 
t h e n  t o  seek t h e  the c o r r e c t i o n  t o  t h e  c o n t r o l ,  6 u ( t ) ,  which c a u s e s  t he  

p e r t u r b e d  s y s t e m  t o  minimize  t h e  o r i g i n a l  per formance  index  s u b j e c t  t o  the  

new i n i t i a l  c o n d i t i o n s  and new f i n a l  c o n s t r a i n t s .  Moreover, we seek a 
feedback form f o r  t h e  s o l u t i o n  of 6 u ( t ) ,  which i n v o l v e s  t he  p e r t u r b a t i o n s  
i n  t h e  s t a t e ,  6x(t), and t h e  p e r t u r b a t i o n s  i n  t h e  f i n a l  c o n d i t i o n s  d$. 

The sys t em 

are  g i v e n  by t h e  f o l l o w i n g  e q u a t i o n s  c71: 
n e c e s s a r y  c o n d i t i o n s  which must be s a t i s f i e d  by t h e  p e r t u r b e d  

6 i  = ~ 6 x  + B ~ U ,  6 x ( t o )  g i v e n  , (3.2.9) 

T = - Wxx6x - A 6X , ( 3.2.10) 

(3.2.11) 

T an T a2Q 

ax tf t f  t f  
6 X ( t f )  = 6xf + [$]I dv + [ = ] I  d t f  

T T T T  = Sf6x + M dv + [ S f i f  + A Sfxf  + A M v + Wxxxf]dtf , (3.2.12) 

(3.2.13) 

-20- 



and 

T T T T N = [ifsf + xfSfA + v MA + xfWxx]6xf + [Mif - $d(tf)] dv 

T .. T T T T 
+ [-v $d(tf) + (?fSf + x f f  S A + v MA + ~ ~ W ~ ~ ) i ~ ] d t ~  . 

(3.2.14) 

3.3 Solution for the Nominal Trajectory 

The solution for the nominal trajectory may be obtained by using 
the state transition matrix and an exponential form for J. For a given 
final time tf, the final states and costates can be written as 

where 

(3.3.1 1 

T -A ' 

G = [  A 

-wxx 

and 

G(tf-to) 
e 

is the state transition matrix for t = tf. By introducing the terminal 
constraint of (3.2.3) into (3.3.1)' and using the boundary condition of 
(3.2.51, one obtains 

-21- 



Upon rearranging and placing the unknown variables on the left hand side, 
one obtains 

from which x(tf), v, and A(to) may be obtained via Gaussian elimination. 

The above solution assumes that tf is known. However, for a free- 
final-time problem, the optimality condition, 52 = 0, of ( 3 . 2 . 8 )  must be 
satisfied as well. This conditon produces a local minimum for J. To 
obtain the global minimum, one can numerically compute the value of J over 
a reasonable range of tf and find which value of tf produces the lowest 
value of J. Efficient propagation algorithms for J are presented in 
Reference 9 for computing values of J for different final times. 

Using (3 .2 .11 ,  (3 .2 .81 ,  ( 3 . 3 . 3 ) ,  and the propagation equations for 

J, one can numerically compute values of J and 52 over a range of final 
times, and hence find the optimal tf. For the case where one wishes to 
adjust Wt so that the optimal final time is at a desired value, one merely 
computes 52 using ( 3 . 2 . 8 )  and ( 3 . 3 . 3 )  at the desired final time and obtain 
the required value of Wt to make 52 = 0. 

Having found the values of the optimal final time and initial 
costates, the nominal state and control trajectories are given by 

-22- 



and 

3.4 Solution for the Feedback Gains 

We now seek the solution for 6u(t) in the form 

(3.3.4) 

(3.3.5) 

where 

u(t) = uN(t) + 6u(t) , 

K, and K2 are the required feedback gains, and u(t) and x(t) are the 
perturbed controls and states. By manipulating the terminal conditions of 
(3.2.12) through (3.2.14) into the following form, which is assumed to be 
valid for to I t 5 tf, the costate perturbations are expressed in a 

feedback form which leads to (3.4.1): 

I 
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where 

A -- 1 -T--l- - 
Q(tf) = - Q ’ i(tf) = - n Q n - a ,  --1 fi(tf) = Q fi  , 

- m T 
m = -  mn - T 

s E s - -  R = R - -  mm - 
a ’  a ’  a ’  

and 

Notice that is singular because Q = 0. 

Treating dv, dtf, d q ,  and dil as constants, one can differentiate 

(3 .4 .2 )  using (3 .2 .9 )  through (3.2.11) and collect terms to obtain the 
differential equations f o r  the coefficient matrices: 

e TA A A 

= - i A - A S + S E S - W x x ,  

T- i = -[A-E;]R, 

0 AT A 6 = R E R ,  

r: AT - n = R E m ,  

0 AT ii = m ~ i ,  

( 3 . 4 . 3 )  

( 3 . 4 . 4 )  

(3 .4 .5 )  

( 3 . 4 . 6 )  

( 3 . 4 . 7 )  

(3 .4 .81 
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where 

-1 T E = B W B .  uu 

The matrices :(t) and i(t) are used for the perturbation feedback, 
while the vectors fi(t) and A(t) are used for the estimation of the change 
in the final time. The matrix G(t) and the scalar &(t) are not needed for 
solving the control problem. 

The solution of the Type 1 differential Riccati equation for s(t) 
is shown in Section 2.2.1 to be 

(3.4.9) 

* 
where Sss satisfies the steady-state Riccati equation 

0 = - $SsA - AT;ss + $E: - Wxx . 

From Table 2-2, the solution for Z(t) can be shown to be 

A( t-to) AT( t-to) 
Z(t) = zss + e  [Z(to) - Zssle 9 (3.4.10) 

- 
where A = A - E.?ss and Zss satisfies the steady-state Lyapunov equation 

for Z(t) defined following (2.2.10). i ( t )  and 6(t) satisfy differ- 
ential equations of Type 2, their solutions are given by (see Tables 2-1 
and 2-2) : 

Since 

and 

-25- 

(3.4.1 1)  

(3.4.12) 
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Since n̂(t) satisfies a differential equation of Type 4, its solution is 
obtained from Table 2-1 as 

The initial conditions for i(t), fi(t.1, fi(t), and fi(t) are required for 
propagating the feedback gains forward in time; these are listed in 

Reference 9. 

Using (3.2.11) and (3.4.2), one can write the feedback gains of 
(3.4.1) as 

and 

-1 TA 
K2(t) = - Wuu B R(t) , (3.4.15) 

where the solutions of ;(t) and fi(t) are given by (3.4.9) and (3.4.111, 
respectively. 

3.5 Time-To-Go Indexing Scheme 

On observing the time arguments in (3.4.1) and recalling the fact 
that the final time is free, it quickly becomes apparent that if the 
optimal final time of the perturbed system lies beyond the nominal final 
time, then the feedback gains are undefined for part of the time (t > tl) 
along the neighboring extrema1 path. One of the methods suggested for 
eliminating this problem is the use of time-to-go indexing C3,20,331 so 

that the time-to-go on the perturbed trajectory is the same as the time- 
to-go on the nominal trajectory (see Figure 3-11. Equation (3.4.1) is 
then re-written as 

(3.5.1 1 



S T A T E  

T T G  = T I f l E - T O - G O  

Act ua I 
T r a j e c t o r y  

x ( t )  
I /' 'I 

I I I I 
I I I I 

I I 

I f I  
d d t  I-+ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

t-t- 
t 

I 
t- 

t = C u r r e n t  Time t, = Indexed  Time 

tN = Nominal  F i n a l  Time = A c t u a l  F i n a l  Time 
tf f 

- 
t, = T i m e - p o i n t s  a t  w h i c h  Ga ins  a r e  Computed 

T l f l E  

Figure 3-1. Time-To-Go Indexing Scheme 
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where 

t y t l  = tf - t ,  

N t is the current time, tI is the indexed time, tf is the nominal final 
time, and tf is the final time on the perturbed trajectory. 

To compute the indexed time, let us re-write the last row of 

(3 .4.2)  for the change in final time: 

where the time arguments for iT(t) and iT(t) have been changed to tI. 
Since the feedback gains i( t) ,  ; ( t > ,  i ( t ) ,  and G ( t >  are efficiently 
propagated at fixed time intervals, let us define tI as the points in 
time at which the values of the feedback gains are available: 

- 

EI = nAt, n = 1 , 2 , 3 ,  ... ( 3 . 5 . 3 )  

where At is the propagation time step. On assuming that the perturbed 
terminal manifold is given by 

the vector dJ, of ( 3 . 5 . 2 )  is computed via 

(3 .5 .4 )  

Since tf of ( 3 . 5 . 5 )  depends on the value of dtf, ( 3 . 5 . 2 )  represents an 
implicit equation for dtf. 

To interpolate the gains to the indexed time, we define 

-28- 



- 
dEI = tI - tI , (3.5.6) 

where fI is a discrete time-point which is close to tI, so that dEI is 
smaller than At in magnitude. The local quadratic fit for a generic 
variable V(tI) is then given by C91 

1 2  2 
V..(tI) = - (d -d)V .(EI-At) + (l-d )V..(tI) 
1J 2 iJ 1J 

where 

+ - 1 (d2+d)V (EI+At) , 
2 ij 

d = dEI/At , 

(3.5.7) 

* A  

and Vij may represent an element of either S, R, 18, or fi. 

The solution for the indexed time is obtained by guessing a value 
for dEI, computing the error in satisfying (3.5.2) via 

and updating the value of dcI via 

dEI := dEI - E .  

(3.5.8) 

(3.5.9) 

Equations (3.5.8) and (3.5.9) are iteratively applied C331 until the value 
of dEI converges. The previously converged value of de, is used as the 
starting guess in the iteration. 

The logic for propagating the gains is as follows. If dtI > At, 
then tI is incremented by At, and the gains are propagated forward by one 
time-step. If dtI < -At, then fI is decremented by At, and the gains are 
propagated backwards by one time-step. The above propagation is repeated, 
if necessary, until ldEII < At. When EI is incremented until 5, = tf, 
then the end of the maneuver is reached. Backward propagation of the 
gains, though not occuring often, may be needed when there are 

N 
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disturbances acting on the system, or when there is a sudden change in the 
terminal manifold during the control interval. Figure 3-2 shows the block 
diagram for the free-final-time perturbation feedback controller. 

3.6 Illustrative Examples 

The specific model considered in this section consists of a rigid 
hub with four identical elastic appendages attached symmetrically about 
the central hub, and is derived from the experimental structure of C61, 
using NASTRAN data (see Fig. 3-3). In particular, the following 
idealizations are considered: (i) single-axis maneuvers, (ii) in-plane 
motion, (iii) antisymmetric deformations, (iv) small linear flexural 
deformations, (v) only the linear time-invariant form of the equations of 
motion are considered, and (vi) the control actuator is modeled as a 

concentrated torque generating device. Figure 3-4 shows the first three 
antisymmetric modes, which, with the rigid body mode, defines the full- 
order model. The control system for the vehicle consists of a single 
controller in the rigid part of the structure. The structural parameters 
Of the model are presented in [6] .  Because of the above assumptions, only 
the antisymmetric modes are used for the example cases in this section. 
In addition, full state feedback is assumed. 

The rigid body mode and the first elastic mode are chosen for 
inclusion in the state vector for the control problem. Hence, the second 
and third elastic modes represent residual modes. Control smoothing is 
done by penalizing the first and second time derivatives of the control in 

the performance index, and augmenting the state vector with the control 
and its first time derivative. The state vector is given by 

x = [?lo ‘Il to t, u li1 T 9 (3.6.1 1 

where no and nl are the amplitudes of the rigid mode and first elastic 
mode, and u is the control torque. 
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Nominal Controls  

Dashed lines indicate variables which 
depend on dtf, the change in final time. 

- x N ( t )  
Nominal S t a t e s  

Nominal Target 

--_ 
I 

Figure 3-2. Block Diagram for the Free-Final-Time Perturbation 
Feedback Controller 
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Flgure 3-3. Model S t ruc tu re  

-32- 



MODE 1, 1.261 Hz 

MODE 2,8.396 Hz MODE 3,24935 Hr 

Figure 3-4. Elastic Deflection Modes 
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As a result of many numerical simulations, it has been found that 
without modifications, the optimal perturbation feedback control, as 
presented in this chapter, performs poorly, especially towards the final 
time when the gains are large and vary quickly. One source of difficulty 
is due to the singularity of i. Since ?j is singular, all of the feedback 
gains become infinite at the final time. Because of numerical 
inaccuracies, this results in randomly large gains near the final time. A 

remedy is to use Q = -€,I, where c l  is a small positive number. The 
negative sign for Q is due to the fact that if Q were to be a function of 
time, it can be shown that Q < 0 for t < tf. With this modification, the 
gains become large in a well-behaved manner near the final time. 

Another difficulty manifests itself in the numerical instability of 
the final time estimation. Since the correction variable, E, of (3.5.8) 
is computed as the difference of potentially large numbers (relative to 
€ 1  , the calculation is easily numerically unstable when the values of 
rfi(tI) and fi(t,) are large or corrupted by numerical inaccuracy. This 
results in values of E alternating in sign and increasing in magnitude at 
each successive iteration, leading to an unstable algorithm. A remedy for 
this problem is to increase the magnitude of a in the expression following 
(3.4.2), using 

(3.6.2) 

where is a small positive number. It is found that on choosing 
= 0.02, the final time estimates become much better behaved, and the 

errors in satisfaction of the terminal constraints are reduced by about 
two or three orders of magnitude. If we use = 0.5, the terminal errors 
are reduced by almost four orders of magnitude. However, with c2 = 0.5 
the free-final-time controller behaves as if it were a fixed-final-time 
controller. From these observations, it is clear that the performance of 
the controller is extremely sensitive to the value of a. It is not 
obvious, however, that a should be modified rather than any other 
variable. Nor is it obvious what the mechanism is for the improvement of 
system performance, since the modification of a affects all of the gain 
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v a r i a b l e s .  However, i t  is i n t e r e s t i n g  t o  n o t e  t h a t  t h e  mod i f i ed  
v a r i a b l e s ,  Q and a, are  d i a g o n a l  b l o c k s  of  the m a t r i x  c o e f f i c i e n t  of 

( 3 . 4 . 2 ) .  The r ema in ing  d i a g o n a l  b l o c k ,  S = S f ,  a l s o  g r e a t l y  a f fec ts  

sys t em per formance ,  as d i s c u s s e d  i n  [ l o ] .  For t h e  r e s u l t s  of  t h i s  

s e c t i o n ,  v a l u e s  chosen f o r  and c 2  are  10-l' and 0.02, r e s p e c t i v e l y .  

Cases 1 and 2 r e p r e s e n t  r e t a r g e t i n g  maneuvers ,  where t h e  f i n a l  hub 

o r i e n t a t i o n ,  a n g u l a r  r a t e ,  a n g u l a r  a c c e l e r a t i o n ,  and t h i r d  time d e r i v a t i v e  
o f  the  hub a n g l e  are r e q u i r e d  t o  match a moving t a r g e t  whose mot ion  is 

presumably known. The nominal  target  motion is a l i n e a r  f l y - b y  (see F i g .  

3-51, where t h e  target  t r a v e l s  i n  a s t r a i g h t  l i n e  a t  c o n s t a n t  v e l o c i t y .  
The s t r u c t u r e  is assumed t o  r o t a t e  about  t h e  z axis ,  w i t h  t h e  appendages 
moving i n  t h e  x-y p l a n e .  The 

f o l l o w i n g  e q u a t i o n s :  

and 

Q ( t f )  - QT(tf)  = 0 ,  

components of t h e  J, v e c t o r  are  g i v e n  i n  t h e  

QT(tf)  = t a n  -l J! , 

vx 
2 2 '  O T ( t f )  = 

x + Y  

2 -2v xy 

( x  + Y )  
O T ( t f )  = 2 2 2 '  

3 2v x 3 2  
8v xy - O T ( t f )  = * . .. 

( x  + y 2 ) 3  (x2  + y 2 ) 2  ' 

(3 .6.4)  

where x = xo and y = yo + v t f .  The p e r t u r b e d  t a r g e t  motion i s  a l so  a 

c o n s t a n t - v e l o c i t y  l i n e a r  f l y - b y ,  b u t  w i t h  a d i f f e r e n t  s t a r t i n g  l o c a t i o n  
and d i f f e r e n t  v e l o c i t y .  The target  p a r a m e t e r s  and w e i g h t i n g  matrices are 

shown i n  Table 3-1. The weight on t h e  e l a p s e d  time is a d j u s t e d  s o  t h a t  

t h e  nominal f i n a l  time is 5.0 s ,  f o r  convenience .  The t e r m i n a l  s t a t e  

w e i g h t i n g  is computed u s i n g  a mod i f i ed  v e r s i o n  of  t h e  a l g o r i t h m  i n  [ l o ] .  

Because of  the large t e r m i n a l  w e i g h t s  on  T-I, and fi, , t he  f i n a l  v a l u e s  of 
t h e  r ema in ing  s t a t e  v a r i a b l e s  are  more o r  less c o n s t r a i n e d  v i a  t h e  

t e r m i n a l  c o n s t r a i n t  c o n d i t i o n s  of  ( 3 . 6 . 3 ) .  T h e r e f o r e ,  t h e  e l e m e n t s  i n  t h e  
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Table 3-1. Maneuver Specifications for Cases 1 and 2 

Weights 

sf = 

2.63(3) 

3.95(3) 3.09(6) 

7.90 -7.31 (2) 

1.18(1) 4.12(4) 

6.24(-3) -3.38(1) 

4.73(-6) -3.52(-2 

2.63 ( 3 1 

3.95(3) 

4.16 

4.23(-3 

2.68(5) 

1.98(2) 

2.01 (-1 

Symmetric 

l.OO(5) 

1.55(2) 3 

W,, = Block diagonal [W,,, W22, 1.00(-5), 1.00(-5)1 

1 2.63 ( -5 1 

3.95 (-5 1 

3.95 (-5 1 

6.91 (-5) 
w l l  = [ 

Nominal conditions: 

e(t,> = &to) = r l l ( t o )  = ?+(to) = dt,) = b(to) = 0 

= 2.7(7), yo = -4.0(4), v = 8.0(3) ,O 

Perturbed Conditions: 

~~~ ~~ 

a(n) indicates a x 10" 
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rows and columns of Sf corresponding to no,  io, u, and h can be set to 

very small numbers. However, because of numerical considerations, these 
elements are set to larger numbers to decrease the condition number of the 
Z(t) matrix. The perturbed trajectory information fo r  Case 2 is 
introduced into the feedback law at t = 2.5 s .  This simulates the case 
when target information is updated during a maneuver. 

The time history plots for Cases 1 and 2 are shown in Figures 3-6 
through 3-8. For Case 1 ,  note that all the terminal constraints are 
satisfied for both the nominal and perturbed trajectories. (The target 
angular acceleration, OT, and third angular rate, OT, are virtually zero 
at the final time for both the nominal and perturbed targets.) For Case 
2, the hub angular acceleration shows a small terminal error. However, 
all other states reach their desired terminal values, including the 
control and its first derivative. The second derivative of the control 
torque shows a very small spike near the final time in Figure 3-8. Such 
spikes are typical when the final gains are large, and may be removed by 

appropriately adjusting Sf, Q, or a of ( 3 . 4 . 2 ) .  

..* 

3.7 Extensions 

The closed-form solutions given in this paper are only applicable 
for control problems where the plant dynamics is linear time-invariant. 
For nonlinear systems, closed-form solutions are much more difficult to 
obtain. Nevertheless, one may use the following method with the closed- 
form solutions of this section to approximate the solution of the feedback 
gains for a nonlinear system. First, one obtains the nominal state and 
control time-histories, using numerical techniques such as shooting 
methods [23,301 and boundary-value continuation (see Sections 4.3.1 and 
4.3.5). Second, the state differential equations are linearized about the 
nominal solution at discrete points in time. Third, piecewise linear 
time-invariant intervals are defined about these discrete points in time. 
Fourth, assuming that the feedback gains are continuous at the boundaries 
of these intervals, one can transfer the terminal conditions for s(t), 
i(t), i(t), and A(t> into initial conditions by sequentially computing 

the boundary conditions at each of the interval boundaries, using the 
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closed-form solutions, starting from the interval nearest the final time 
and going backwards in time. Finally, one can use the initial conditions 
f o r  $(t>, i(t), i(t), and i(t>, with closed-form solutions and piece- 
wise linear time-invariant system differential equations to apply the 
feedback gains to the perturbed states and perturbed terminal constraints. 
The length of the linear time-invariant intervals may need to be adjusted 
depending on the degree of nonlinearity present at a given time along the 

nominal trajectory. 
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SECTION 4 

NONLINEAR THREE-AXIS MANEUVERS FOR FLEXIBLE SPACECRAFT 
WITH CONTROL SMOOTHING 

4.1 I n t r o d u c t i o n  

T h i s  s e c t i o n  p r e s e n t s  f o r m u l a t i o n s  f o r  g e n e r a l  n o n l i n e a r  t h r e e - a x i s  
s l e w i n g  maneuvers f o r  f l e x i b l e  s p a c e c r a f t .  The approach  used  here is t o  

f i n d  t h e  o p t i m a l  s o l u t i o n  f o r  t h e  r i g i d  body model, and t h e n  t o  a p p l y  t h i s  

open-loop r i g i d  body o p t i m a l  c o n t r o l  t o  the  f u l l y  f l e x i b l e  s p a c e c r a f t  w i t h  

a p e r t u r b a t i o n  feedback c o n t r o l l e r .  The p e r t u r b a t i o n  feedback c o n t r o l l e r  
c o n t r o l s  s e v e r a l  f l e x i b l e  modes i n  a d d i t i o n  t o  t h e  r i g i d  body modes, and 
t h e  feedback g a i n s  are computed u s i n g  the  f l e x i b l e  p l a n t  l i n e a r i z e d  abou t  
t h e  r i g i d  body nominal  s o l u t i o n  a t  s e v e r a l  p o i n t s  a l o n g  t h e  maneuver.  An 

ex tended  Kalman f i l t e r  is implemented t o  estimate the  p l a n t  states. 

Example maneuvers are shown u s i n g  t h e  model o f  a g e n e r i c  space v e h i c l e .  

S e c t i o n  4 .2  p r e s e n t s  a d i s c u s s i o n  o f  model development and 
s i m u l a t i o n  i s s u e s .  S e c t i o n  4.3 p r e s e n t s  t h e  s o l u t i o n  t o  t h e  n o n l i n e a r  
r i g i d  body problem. The f l e x i b l e  body p e r t u r b a t i o n  f o r m u l a t i o n  is 

developed  i n  S e c t i o n  4 . 4 ,  and t h e  ex tended  Kalman f i l t e r  is d i s c u s s e d  i n  
S e c t i o n  4.5. 

4 .2  Model Development 

The spacecraft  model used f o r  t h e  example maneuvers o f  t h i s  s e c t i o n  

is based on a s a t e l l i t e  model similar t o  t h e  N-ROSS s a t e l l i t e ,  which 

c o n s i s t s  of  a more o r  less  r i g i d  bus  and s e v e r a l  f l e x i b l e  appendages 
( F i g u r e  4-1 ) .  For t h i s  s t u d y ,  t h e  s p a c e c r a f t  bus is assumed t o  be r i g i d ,  

and o n l y  two of  t h e  appendages ,  namely t h e  r a d i o m e t e r  and t h e  s o l a r  array,  

are assumed t o  be f l e x i b l e .  The f r e q u e n c i e s  and mode shapes o f  t h e  

f l e x i b l e  appendages are  i n  t h e  form of  NASTRAN o u t p u t  data.  
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The original spacecraft design has one rigid body and six flexible 
appendages. Since only two of the appendages are considered flexible for 
this study, the remaining appendages and the rigid body are lumped 
together to form one rigid body. The total system inertia matrix about 
the system center of mass is given in units of slug-ft2 by 

590.7 

570.2 . 1 -468.7 

4242 

590.7 570.2 21 05 

(4.2.1 1 

The flexible appendages are each assumed to have five elastic degrees of 
freedom, and their frequencies are listed in Table 4-1. Every mode is 
assumed to have 0.1% damping. 

4.2.1 Multibody Dynamics Simulation 

The numerical simulation for the example maneuvers was carried out 

Using a program called DISCOS (Dynamic Interaction Simulation of Controls 
and Structures) [4], which is a well-known package of software developed 
for the National Aeronautics and Space Administration (NASA) and 
distributed by Computer Software Management and Information Center 
(COSMIC). In DISCOS, a complex structure may be modeled as several rigid 
or flexible structures connected together at specific points, called 
hinges. The equations of motion for each body may then be written in the 
same general form for a single body, with the coupling between bodies 
provided by Lagrange multipliers which maintain the desired interface 
constraints. 

4.2.2 Recent Issues in Multibody Dynamics Simulation 

Doubts have recently been cast on the validity of multibody 
computer programs such as DISCOS [4], NBOD [121, ALLFLEX [15,161 and 
TREETOPS [32]. Since DISCOS was chosen to simulate the three-dimensional 
nonlinear slews of this section, an investigation was carried out to 

determine the validity of such claims C191. 
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One of  t he  claims was t h a t  c u r r e n t  mul t ibody computer programs do 
no t  i n c l u d e  r o t a t i o n a l  i n e r t i a  terms f o r  t h e  i n d i v i d u a l  e l emen t s  o f  a 

f i n i t e  e lement  model. However, as shown i n  Refe rence  9 ,  by computing t h e  

i n e r t i a  m a t r i x  f o r  a s i n g l e  body from f irst  p r i n c i p l e s ,  and comparing t h e  

r e s u l t  w i t h  t h e  documenta t ion  f o r  DISCOS C41, i t  is found t h a t  DISCOS does  

i n c l u d e  r o t a t i o n a l  i n e r t i a  terms f o r  t h e  i n d i v i d u a l  e l emen t s  of  a f i n i t e -  
e lement  model. 

Another i s s u e  of  conce rn  is t h e  absence  of  a gy roscop ic  s t i f f e n i n g /  

arc l e n g t h  c o r r e c t i o n  term i n  c u r r e n t  mul t ibody computer programs. The 

arc l e n g t h  c o r r e c t i o n  i n v o l v e s  t h e  d i f f e r e n c e  i n  d i s t a n c e  t o  a p o i n t  on a 

l o n g  s l e n d e r  beam when measured a l o n g  t h e  deformed beam and when measured 

as the  p r o j e c t i o n  o n t o  t h e  beam's undeformed p o s i t i o n .  I n c l u s i o n  o f  t h i s  

c o r r e c t i o n  term leads t o  a s t i f f e n i n g  term i n  t h e  e q u a t i o n s  of  mot ion ,  

which i n c r e a s e s  w i t h  h i g h e r  a n g u l a r  v e l o c i t i e s ,  hence t h e  term gyrOSCOpiC 
stiffening. Since this effect is applicable only to long slender rods, 

and is impor t an t  o n l y  f o r  h i g h  a n g u l a r  v e l o c i t i e s ,  i t  is o f t e n  n o t  
i n c l u d e d  i n  g e n e r a l  mul t ibody computer programs. For t h e  example cases of  

t h i s  s t u d y ,  t h e  a n g u l a r  v e l o c i t e s  are small, hence  t h e  n e g l e c t e d  
g y r o s c o p i c  s t i f f e n i n g / a r c  l e n g t h  c o r r e c t i o n  terms are n o t  i m p o r t a n t .  

4.3 Optimal  Non l inea r  Three-Dimensional  Maneuvers w i t h  C o n t r o l  

Smoothing f o r  R ig id  S t r u c t u r e s  

T h i s  s u b s e c t i o n  dea ls  w i t h  t h e  s o l u t i o n  f o r  t h e  open-loop nominal  
c o n t r o l  p r o f i l e  which is based on a r i g i d  body model. The s o l u t i o n  t o  t h e  

n o n l i n e a r  o p t i m a l  c o n t r o l  problem is o b t a i n e d  by f irst  s o l v i n g  t h e  problem 
of  a s i n g l e - a x i s  maneuver w i t h  a d i a g o n a l  i n e r t i a  m a t r i x ,  and t h e n  u s i n g  a 

c o n t i n u a t i o n  method t o  i n t r o d u c e  t h e  t h r e e - a x i s  boundary c o n d i t i o n s  and 
o f f - d i a g o n a l  e l emen t s  of  t he  i n e r t i a  m a t r i x .  

-46- 



4.3.1 Continuation Method 

The continuation method [ 2 9 ] ,  also known as homotopy chain method, 

is a process by which a continuation parameter, a, is imbedded into the 
equations of a problem so that when a is set to zero, the modified problem 
becomes easy to solve, and when a is set to one, the modified problem 
reverts to the original hard-to-solve problem. Typically, the 
continuation parameter is used to multiply terms which make the problem 
difficult to solve. 

There are many ways of sweeping the value of the continuation 
parameter from zero to one. One way is by numerical integration which 
requires the calculation of the derivative of the solution with respect to 
the continuation. For some problems, is is difficult to compute this 
derivative. Instead, a prediction-correction type of integration may be 
performed, where previously converged intermediate solutions are used to 
estimate the required derivative by means of finite differences. A more 
crude but simple approach is to slowly increment the value of a, and 
perform an iterative correction at each increment. This approach is less 
efficient, but involves the least amount of programming. 

4.3.2 Equations of Motion 

For the rigid body control problem, let us select as state 
variables Euler parameters, B ,  body angular velocities, w ,  pseudo- 
controls, uo, and pseudo-control rates, u,. The pseudo-control vector is 

defined as 

(4.3.1) 
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where 

- I X Z  
-I 

I X X  X Y  

[ I ]  = [ -Iyx Iyy -;yz] 9 

-I -I zx ZY zz  

and ux ,  u and uz a re  t o r q u e s  abou t  t h e  x ,  y ,  and z a x e s ,  r e s p e c t i v e l y .  
The t o r q u e s  are assumed t o  be a p p l i e d  by c o n c e n t r a t e d  t o r q u e  g e n e r a t i n g  
d e v i c e s  a c t i n g  on  t h e  r i g i d  s p a c e c r a f t  bus .  The i n c l u s i o n  o f  t he  pseudo- 

c o n t r o l s  and pseudo-con t ro l  rates is f o r  c o n t r o l  smoothing,  as d e s c r i b e d  

i n  Reference  9. Pseudo-con t ro l s  are used i n s t e a d  o f  t he  a c t u a l  a p p l i e d  
t o r q u e s  because  t h e  u s e  o f  a p p l i e d  t o r q u e s  r e s u l t s  i n  l a r g e  v a l u e s  f o r  t h e  

a n g u l a r  v e l o c i t y  c o s t a t e s  when t h e  moments of  i n e r t i a  are large.  By u s i n g  

p s e u d o - c o n t r o l s ,  t h e  problem is normal ized  so  t h a t  t he  v a l u e s  of  t he  

s t a t e s  and c o s t a t e s  are  c l o s e  t o  t h e  same o r d e r  of  magni tude.  The 

e q u a t i o n s  of  motion can  be shown t o  be 

Y ’  

and 

2 ’  5 = u  1 

where 
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Z -w Y -w X -w r o  
w -w 0 Y X 

T 
w = cwx wy wzl , 

and 

-w w Z 0 

[GI = [ w; 1 -::I 
-w X 

In the above equations, (4.3.2) is the kinematic equation relating the 
Euler parameter rates and the body angular velocities, and (4.3.3) 
represents Euler’s equation in terms of pseudo-controls. 

4.3.3 Optimal Control Problem and Necessary Conditions 

For rigid body nonlinear three-dimensional slews, let us define the 
optimal control problem as the minimization of a finite-time quadratic 
performance index 

where 

T T U T  T T  
x = [ B w  0 ull  ’ 
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and 

w =  

0 0 0 0 0 

0 Q 0 0 0 

2 
0 0 I 0 I /WB 

0 0 0 0 0 

4 
0 0 1/w; 0 I /WB 

s u b j e c t  t o  t h e  s t a t e  dynamics e q u a t i o n s ,  (4 .3 .2 )  t h rough  (4 .3 .51 ,  w i t h  

s p e c i f i e d  i n i t i a l  and f i n a l  s ta tes .  The symbol I r e p r e s e n t s  the  ( 3  x 3) 
i d e n t i t y  m a t r i x .  I n  t h e  per formance  index  of (4 .3 .61 ,  the  we igh t  m a t r i x ,  

W ,  does n o t  i n c l u d e  p e n a l t i e s  on t h e  E u l e r  p a r a m e t e r s ,  s i n c e  t h e  a n g u l a r  

d i s p l a c e m e n t s  may be large.  A w e i g h t i n g  m a t r i x  is p l a c e d  o n  t h e  a n g u l a r  

v e l o c i t y  terms s o  t h a t  t he  a n g u l a r  v e l o c i t i e s  may be k e p t  small. The 
p e n a l t y  terms on t h e  p s e u d o - c o n t r o l s  and pseudo-con t ro l  ra tes  are t h e  

time-domain e q u i v a l e n t  of frequency-domain p e n a l t i e s  on  t h e  pseudo- 
c o n t r o l ,  where t h e  f r e q u e n c y  r a n g e  above wB is p e n a l i z e d  (see Ref. 9 ) .  

The Hami l ton ian  for  t h e  per formance  index  of (4 .3 .6)  and  t h e  s t a t e  

dynamics of (4 .3 .2 )  t h r o u g h  (4 .3 .5 )  may be w r i t t e n  as 

1 T  T T T 2  H = ~ [ w  Qw + u u + u u / w 4  + 2u u /wB] 
0 0  2 2  B 0 2  

where Y ( 4  x l ) ,  X ( 3  x l ) ,  po ( 3  x l ) ,  and  u1  ( 3  x 1 )  are  costate  o r  

a d j o i n t  v a r i a b l e s  f o r  B ,  w, uo,  and  u l ,  r e s p e c t i v e l y .  The n e c e s s a r y  

c o n d i t i o n s  can  t h e n  be d e r i v e d  from t h e  Hami l ton ian  as 
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and 

aH T 
[-I 1 ’  = bo = u 

= b, = u 2 ’  

- -  Bl - Po ’ 
-[-I a H  T = 

a u l  

2 
+ u /wg + FL1 [-3 a H  T = 0 = u / w  4 

au2 
9 2 B  o 

where the following notation has been used 

(4.3.8) 

(4.3.9) 

(4.3.10) 

(4.3.11 

(4.3.12) 

(4.3.131 

(4.3.14) 

(4.3.15) 

(4.3.16) 

f o r  general vectors (o r  s c a l a r s )  and w. I n  the e - i a t i o n s  above, the 
i n i t i a l  and f i n a l  values for  8 ,  w ,  uo and u1 a r e  specif ied.  However, no 

boundary conditions a r e  known f o r  Y ,  A ,  uo, and p l .  
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4.3.4 Starting Guess for the Continuation Method 

4 

The necessary conditions for the rigid body slewing problem shown 

in (4.3.8) through (4.3.16) represent a set of difficult nonlinear 
differential equations with split boundary conditions. To solve the 
differential equations, a continuation method is used, as discussed in 
Section 4.3.1. The first step is to find a starting guess which is easy 
to solve. For this, we choose a single-axis maneuver about a principle 
axis. To further simplify the calculations, we assume initially that the 
inertia matrix of the spacecraft is diagonal, with the non-zero off- 
diagonal terms introduced during the continuation process. 

. 

A reasonable choice of axis for the starting guess solution is to 
use the axis with the highest peak angular momentum if the single-axis 
maneuver were to be accomplished via bang-bang control. This is also the 
axis about which the largest bang-bang torque would be applied. Denoting 
this axis by k, where k = 1 ,  2, or 3 corresponds to the x, y, or z axis, 
one may write a modified subset of the necessary conditions of (4.3.8) 
through (4.3.16) for rotation about axis k :  

where 
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and @k(t) is the angular displacement about axis k. 
we have imposed the orthogonality constraint: 

In deriving (4.3.171, 

4 

i=l 
c BiYi = 0 (4.3.18) 

to ensure uniqueness of the Euler parameter costates. 

Since (4.3.17) represents a linear time-invariant system, the final 
values of X(t) can be related to the initial values by an equation of the 
form 

(4.3.191 

Observing that the initial and final values for @k, Wk, (u0)k, and (u1>, 
are known, one can perform the partitioned matrix multiplication in 

(4.3.19) for the upper partition of X(tf), and solve for the unknown 
initial values of (po)k, (p1)k, 6 ,  and the unknown constant C, via 
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where 

9 

(4.3.20) 

The initial values of Bo, Bk, Yo,  Yk, and xk are then given in 
terms of elements of X(to> by 

(4.3.25) 

The initial conditions of (4.3.21) through (4.3.251, together with 

wk(t,), Cuo(to)lk, CUI (to)lk, [~o(to)lk, and c p l  (to)lk of X(to) comprise a 
complete set of initial conditions for a single-axis maneuver with a 

diagonal inertia matrix. 
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4.3.5 Continuation for Inertia Matrix and Boundary Conditions 

Given the single-axis rotation with diagonal inertia matrix 
starting guess of Section 4.3.4, the three-axis optimal maneuver with 
fully populated inertia matrix may be obtained through a continuation 
process. The continuation approach used is one where the continuation 
parameter, a ,  is incremented at discrete steps, with convergence at each 
step achieved via a Newton-Raphson iteration. 

Since there are two different quantities introduced during the 
continuation process--off-diagonal elements of the inertia matrix and 
three-axis boundary conditions--the continuation process may be performed 
separately or combined together in one process. When one combined 
continuation process is used, it may be advantageous to retain the ability 
to use separate continuation parameter increments for the two quantities 
when handling extremely difficult problems. 

For the inertia matrix continuation, the inertia matrix of (4.3.1) 
is replaced by 

(4.3.26) 

Setting a1 = 0 produces the diagonal inertia matrix used in Section 4.3.4, 
and setting a, = 1 produces the original fully populated inertia matrix. 

For the boundary condition continuation, let us define the modified 
terminal Euler angles as 

(4.3.27) 

where k represents the axis used for the starting guess of Section 4.3.4, 

and @j(tf), (j=1 ,2,3), are the desired final Euler angles of the three- 
axis maneuver. For each value of the continuation parameter, a2, the 
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modified final Euler parameters are computed from the values of JI The 

modified final conditions for the angular velocities, pseudo-controls, and 
pseudo-control rates are similarly defined as 

j* 

and 

j = k ,  

j + k ,  
w.(tf,a2) = 

J 
(4.3.28) 

(4.3.29) 

(4.3.30) 

The modified initial conditions are defined in the same manner as for the 

modified final conditions. 

After each increase of the continuation parameters, the previously 
converged values of the initial costates no longer generate trajectories 
which satisfy the final boundary conditions. As a result, an iterative 
correction scheme is needed to correct the initial costates based on the 
error in satisfying the final boundary conditions. For this purpose, a 
Newton-Raphson first-order correction scheme is used. This is 
accomplished by Taylor expanding the terminal values of the states as 
functions of the initial costates. As a result, the partial of the final 
states with respect to the initial costates must be computed. To obtain 
quicker convergence, one may use extrapolated values of the initial 
costates based on previously converged values and back a values C8,29,341. 

For each iteration, the modified state-costate vector is integrated 
from to to tf, and the error in satisfaction of the modified final 
conditions is computed. To obtain the partial of the final states with 
respect to the initial costates, one must integrate the partials of the 

state-costate vector with respect to the initial costates, along with the 
integration of the state-costate vector. That is, the matrices 
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and 

are integrated from to to tf, where 

(4.3.31) 

and x is defined following (4.3.6). The initial conditions and 
differential equations for integrating these partials are presented in 
Reference 9. The corrected costates for the next iteration are obtained 
as follows: 

where 

m 
1 

= [a, a,] , 

T U T  T T  
0 ullI = C O B  B B W 1 2 3  X1(tf ,a) 

and 

. . .  

. . .  

L 

0 . . .  0 

4 
XZA 1 3  

“1 3‘1 3 
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In (4.3.21, the subscript d for Xd(tf,a) indicates the desired modified 
final values, and the subscript I for jTI(tf,a) indicates the integrated 
final values for the current iterate. The variables Xd(tf,a), XI(tf ,a), 
and @ represent modified forms of Xd(tf,a), xI(tf,a), and 
aX(tf,a)/ah(to,a), where the modification has been performed by replacing 
the first row of the Taylor expansion for X(tf,a) by the orthogonality 
constraint C361 

- 
- 

(4.3.33) 

where Yd(to,a) is the desired initial Euler parameter costate. 

The entire continuation process is summarized in algorithmic form 
as follows. (The single-axis diagonal inertia matrix starting guess of 
Section 4.3.4 is assumed to have been computed.) 

Step 1. If al = 1 and a2 = 1 ,  stop. (end of continuation). Otherwise, 
increment a1 and a2, and compute [I(al)], x(t0,a2), and x(tf,a2). 

Step 2. Integrate state-costate differential equations ((4.3.8) through 
(4.3.15)), and state-costate partials with respect to initial 
costates (Reference 9). 

Step 3. Compute error in satisfaction of modified final boundary 

conditions. If small, go to Step 1. 

Step 4. Compute new initial costates ((4.3.32)). Go to Step 2. 

-- 

4.3.6 Numerical Results 

A 60 second rest-to-rest maneuver with angular displacements of 1 

radian about each axis (using a 1-2-3 Euler sequence) is simulated. The 
weighting matrix for the angular velocity is arbitrarily chosen as 
Q = where I is the (3 x 3) identity matrix. In choosing the value 
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for the break frequency, uB, it is found that it is best to choose uB 

that it corresponds to the frequency of the maneuver; that is, 
so 

2lI 
W "  B (tf-to) 

(4.3.34) 

For the above value of uB, the resulting maneuver has pseudo-controls with 
smooth profiles (Figure 4-2). For higher values of uB, the pseudo-control 
profiles of the resulting maneuver have more undulations (see Figure 4-3). 

This reflects the higher frequency content of the controls, directly 
resulting from the higher value of uB. For lower values of uB, the 
resulting trajectories are similar to the case where uB is chosen 
according to (4.3.34).  However, the number of Newton-Raphson iterations 
required for convergence is increased slightly, indicating that the 
partial derivative matrix of (4 .3.32)  may have become numerically stiffer. 
To illustrate the effect of the choice of uB on the frequency content of 
the resulting control, Figure 4-4 shows the frequency spectra of the 
pseudo-control for the single-axis starting guesses with uB corresponding 
to Figures 4-2, and 4-3. Because the penalty function of (4 .3 .6 )  
penalizes the frequency content of the pseudo-controls for values of 

frequency above uB, one sees a sharp roll-off near uB in Figure 4-4. 

4.4 Perturbation Feedback for Controlling the Flexible Body Response 

4.4.1 Plant Linearization and Gain Calculation 

This section presents a perturbation feedback scheme for control- 
ling the elastic deformations of a flexible body when subjected to the 
nominal rigid body torque profile of Section 4.3. The flexible plant 
dynamics is linearized about the rigid body nominal solution at several 
points in time. Steady-state feedback gains are computed based on these 
linearized plants and an infinite-time performance index with control-rate 
penalty. 

The state perturbations used for the flexible plant model for the 
perturbation feedback are 
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(4 .4 .1  

where 6wx, 6 w  and 6wz are the perturbed body angular velocities of the 
spacecraft bus, cs and 6 ,  are the modal amplitudes of the solar array and 
the radiometer, respectively, and 6$x, S$,, and 64, are angular 

displacements of the spacecraft bus. The modal amplitudes, SS and E , ,  

represent a reduced order elastic model. The numerical simulation 
includes several additional elastic modes to represent the residual mode 
responses. 

Y' 

From DISCOS, the linearized system dynamics and control influence 
matrices are obtained numerically through a quadratic finite difference 
approximation. The linearized differential equation for the state 
perturbations is then 

gK(t) = A(i)6x(t) + B(i)6uo(t) , t = t i ,  (4.4.2) 

where ti is the instant in time at which the plant is linearized, A(i) and 

B(i) are the linearized state dynamics and control influence matrices at 
t = ti, and uo(t) is the pseudo-control. 

For control-smoothing, the above differential equations are augmented by 
the differential equations for the perturbed pseudo-control: 

'do - - 6u, 9 

6fi, = 6u* . 
and 

( 4 . 4 . 3 )  

(4 .4 .4 )  

The performance index used for computing each set of steady-state 
gains is 
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where 

w =  

Q 0 0 0 

0 0 0 0 

4 0 I / W B  0 I / W B  

The penalties on the pseudo-controls, and their rates are in the form used 
in Gupta's frequency-shaped control smoothing where the break frequency, 
uB, may be different from the one used for the rigid body nominal. For 
each linearized plant, steady-state gains are computed based on the 
performance index of (4.4.51, and the dynamics equations of (4.4.2) 
through (4.4.4). Since the performance index is not rigorously minimized 
f o r  the nonlinear plant, this feedback approach is suboptimal with respect 
to the performance index of (4.4.5). 

For a given plant, described by A(i) and the optimal steady- 
state feedback solution for minimizing the performance index of (4.4.5) is 
given by 

where 

4 R = I / w B  , NT = [O I / u i  01 , 

(4.4.6) 



A =  

A (  i 1 

0 

0 

0 0 

I 0 

0 0 

B (  i 1 

0 

0 

w =  

0 

0 I 1  , 

- 

“I R , 

Q 

NT 

ET = [ O  0 11 , 

-1 T -T (ill + , (i), -T (i) - (i)i + N]R [N + B Pss 0 = Pss + A pss pss 

and 

T T T T 6?(t) = [6x (t) 6uo(t) 6Ul(t1] . 

During the perturbation feedback, the feedback gains are linearly 
interpolated between the points in time at which the gains are computed. 

4.4.2 Numerical Results 

Example cases are generated with the assumption of perfect state 

estimation. (Section 4.5 shows example cases where the Kalman filter is 
used for state estimation.) The 60 second rest-to-rest maneuver discussed 
in Section 4.3.6 is used for the nominal trajectory. The flexible plant 
is linearized about the rigid body nominal solution at 12 second 
intervals. Several off-nominal cases are studied. For all cases, the two 
lowest solar array modes and the two lowest radiometer modes are chosen 
for inclusion in the feedback formulation. The other higher frequency 
modes represent residual modes. All modes are assumed to have 0.1% 

damping. The break frequency for the perturbation controller, uB, is 
chosen to be half the frequency of the highest controlled mode, so as to 
minimize the excitation of the residual modes. Figure 4-5 shows the 
frequency spectra of the pseudo-control corrections when the perturbation 
feedback controller is subjected to initial conditions. 
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Case 1 (Figure 4-6) is the 'nominal' flexible body case, with 
perfect plant knowledge and nominal initial conditions. The controlled 
modal amplitudes and residual modal amplitudes for the solar array 
(denoted as S/A) and the radiometer are plotted separately. Note that all 
the modal amplitudes are very small by the end of the maneuver. The angle 
errors take a slightly longer time to settle. The pseudo-control 
corrections (denoted by Del u), take about 20 seconds beyond the maneuver 
time to damp out. For the case where the moments of inertia of the rigid 
bus are altered by l o % ,  the modal amplitude profiles are almost identical 
to those of Case 1 ,  while the angle error histories and pseudo-control 
corrections are altered in amplitude. 

Case 2 (Figures 4-7 and 4-81 is the same as Case 1 ,  except that 
initial angular errors are specified for Case 2. The error in the initial 
angle is chosen to be 5% of the total angular displacement about each 
Euler axis. The sign of each of the errors is arbitrarily assigned. Note 
that the initial angular errors are an order of magnitude higher than the 
peak angular errors shown in Case 1. After about 20 seconds, the angular 
error and modal amplitude time histories approach the general shapes of 
the corresponding plots for Case 1.  Since the peak values for the pseudo- 
control corrections are more than an order of magnitude higher than those 
for Case 1, the peak modal amplitudes are also higher than in Case 1. It 
appears that the oscillations in the pseudo-control corrections near the 
initial time may have excited the third radiometer mode (a residual mode). 
Additional example cases are presented in Reference 9. 

4.5 Kalman Filter for Observing the System States 

4.5.1 Gain Calculation 

This section presents a modified Kalman filter to estimate the 

system states used in the perturbation feedback scheme of Section 4.4. 
The approach presented here involves the use of linearized plant equations 
similar to those used for the perturbation feedback. 
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(i) Let us assume that in addition to the system dynamics matrix, A , 
and the control influence matrix, of (4.4.21, the measurement 
influence matrix, C(i), is also linearized about the nominal trajectory at 
several points in time. For the calculation of the Kalman gains, let us 
assume that the linearized plant dynamics and measurements are subjected 
to Gaussian white noise disturbances: 

and 

t = t i ,  (4.5.1 1 

y(t) = C(i)x(t) + v(t) , 

where 

E[w(t>l = 0 , and E[v(t)l = 0 . 

(4.5.2) 

Let us assume a linear estimator of the form 

i(t) = A(i)G(t) + B(i)uo(t) + K(i)[y(t) - C(i)G(t)] , (4.5.3) 

where K(i) is a set of constant observer gains. 

It can be shown that the gain matrix which minimizes the error 

46 covariance is given by 

where X" is the steady-state error covariance matrix for the linearized 
plant: 
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O = A X  + ss 

and the superscript 

+ G ,  T-- 1 - XssC R CXss T 
XssA 

notation has been dropped. 

(4.5.5) 

During the simulation of the estimator, the variables A(i), 
C(i), and K(i) are linearly interpolated as in Section 4.4 for the 

perturbation feedback gains. 

4.5.2 Numerical Results 

As in Section 4.4.2, the flexible plant is linearized about the 
rigid body nominal solution at 12 second intervals for the results of this 
section. The measurement variables used for the results of this section 
are the spacecraft Euler angles relative to the inertial frame; the body 
angular velocities of the spacecraft bus; the out-of-plane deformations 
and velocities of diagonally opposite corners of the solar array (points 3 
and 6); and the deformations and velocities of two points on the 
radiometer (points 9 and 10). It is assumed that raw data from sensors, 
such as accelerometers on the solar array, has already been processed to 
provide the measurements stated above. Due to the limited scope of this 
study, the sensor locations are not optimized for best performance. The 
process and measurement noise variances are chosen as small percentages of 
the peak values experienced in the 'nominal' Case 1 of Section 4.4.2. 
Case 3 (Figs. 4-9 through 4-11) shows the result of replacing the true 
state variable by the state estimate in computing the perturbation 
feedback for Case 1 of Section 4.4. Figure 4-9 shows that the Euler 
angles converge t o  their desired final values of 1 radian, with slight 
overshoot for the first and third Euler angles. The sensor point 
deformations shown in Figure 4-9 have very smooth profiles which converge 
to zero near the final maneuver time. Points 3 and 6 correspond t o  the 
two corners of the solar array, and points 9 and 10 correspond to two 
points near the center of the radiometer. The pseudo-control corrections 
of Figure 4-10 have higher peak values than the corresponding plots in 
Case 1 of Section 4.4. The angular estimate .errors show the result of 
linearization at discrete points in time. One remedy is to linearize the 

plant at shorter time intervals. A better solution is to perform 
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perturbation estimation about the nominal rigid body trajectory rather 
than estimation for the entire state. Figure 4-11 shows the amplitudes of 
the controlled modes and their estimates. One can see that the first 
solar array and radiometer modes are not estimated very well. This is due 
to observation spillover from the residual modes. In order to minimize 
the effects of observation spillover, one must choose optimal locations 
for the sensor points. Since there are 271 grid points on the radiometer 
with 5 modes, and 1000 grid points on the solar array with 4 modes (the 
original model has 15 modes), and six degrees of freedom to choose from, 
an automated procedure must be used for the selection of sensor locations 
C4,371. However, this is beyond the scope of the current study. 
Additional examples are shown in Reference 9. 
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SECTION 5 

SUMMARY AND CONCLUSIONS 

This report has covered three different, yet interrelated topics. 
Section 2 has dealt with a new class of closed-form solutions for finite- 
time linear-quadratic optimal control problems. These closed-form 
solutions are used in Section 3, which presents the solution for the 
neighboring extrema1 path problem, as applied to spacecraft slewing 
maneuvers. Section 4 has dealt with general nonlinear slewing maneuvers 
for flexible spacecraft, for which the results of Section 3 are useful 
when the terminal conditions are slightly perturbed. A more detailed 
summary of each section follows. 

Section 2 has dealt with a new class of closed-form solutions for 
finite-time linear-quadratic optimal control problems where the plant is 
linear time-invariant. This class of closed-form solutions is based on 
Potter's solution, which consists of a steady-state plus transient term, 
for the differential matrix Riccati equation. Five basic differential 
equations are identified for the solution of finite-time linear-quadratic 
optimal control problems. Closed-form solutions are presented for these 
five basic differential equations, and example control problems are 
presented where these solutions are used to obtain closed-form analytic 

expressions for the feedback gains, state trajectories, control 
trajectories, and residual state trajectories, with the assumptions of 
perfect plant knowledge, and perfect state estimation. 

For each example control problem, comparisons are made with closed- 
form solutions based on the Kalman-Englar method, and on the state 
transition matrix. For each case, it is found that the new class of 
closed-form solutions is more efficient than the Kalman-Englar type of 
solution based on the state transition matrix. Furthermore, it is well 
known that the Kalman-Englar solution for the Riccati matrix is 
numerically unstable when the propagation time-step is large, or when the 
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Riccati solution is not symmetrized at each time-step. Such numerical 
problems do not occur in Potter's solution for the Riccati matrix. Thus, 
it seems that the new class of solutions is numerically superior to the 
Kalman-Englar type of solutions for feedback gains and state transition 
matrix solutions for state and control trajectories. However, a rigorous 
analysis of the numerical stability and error propagation characteristics 
of the new class of closed-form solutions remains a topic for further 
research. 

The relationship between the new class of solutions and the state 

transition matrix solutions is illustrated by means of reducing subspace 
transformations for the Hamiltonian matrix. 

The closed-form solutions developed in Section 2 are applied to the 

free-final-time neighboring extremal path problem with linear terminal 
constraints, a quadratic performance index, and a linear time-invariant 

plant. Closed-form solutions are presented for the perturbation feedback 
gains which cause the system to follow a neighboring extremal path when 
subjected to small perturbations in the initial conditions and terminal 
constraints. Numerical experiments indicate that slight numerical 
modifications can greatly reduce the sensitivity of the feedback gains 
near the final time. An extension is shown for using the closed-form 
solutions for problems with nonlinear plants. 

Section 4 has presented a formulation for general nonlinear slewing 

maneuvers for flexible spacecraft, whereby a rigid body nominal control 
profile is applied while a perturbation feedback controller limits the 
flexible body response and controls the plant to follow the rigid body 
nominal trajectory. The use of control smoothing in both the rigid body 
nominal solution and the perturbation feedback controller greatly reduces 
the excitation to the elastic degrees of freedom. 

Numerical results show that the break frequency used for the 
control smoothing formulation for the rigid body nominal solution should 
be linked to the maneuver time in order to produce good results. 
Numerical results for the perturbation feedback controller show that it 
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performs very well under off-nominal conditions for a 60 second maneuver. 
For further research, it is recommended that the maneuver time be 
shortened so that the break frequency for the rigid body nominal solution 
overlaps some of the structural frequencies. Such a case should prove 
challenging, since this would involve more interaction between the rigid 
modes and the elastic modes. 

A modified Kalman filter is presented for estimating the system 
states. Numerical results indicate that the approach is feasible. 
However, for further work, it is recommended that a sensor location 
optimization be performed to minimize the possibliity of observation 
spillover. Furthermore, a perturbation estimation approach may be used, 
whereby one estimates the state perturbations rather than the states 
themselves. 

For maneuvers where the desired final conditions are different from 

the nominal final conditions, one must use the optimal perturbation 
feedback of Section 3, with the modifications for nonlinear plants. Such 
an approach would result in near-optimal time-varying feedback gains, 
using the same type of linearized plant as used for the results of Section 
4. 
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